Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2306333, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526196

RESUMO

Synthetic biology aims to engineer transgene switches for precise therapeutic protein control in cell-based gene therapies. However, off-the-shelf trigger-inducible gene circuits are usually switched on by single or structurally similar molecules. This study presents a mammalian gene-switch platform that controls therapeutic gene expression by a wide range of molecules generating low, non-toxic levels of reactive oxygen species (ROS). In this system, KEAP1 (Kelch-like ECH-associated protein 1) serves as ROS sensor, regulating the translocation of NRF2 (nuclear factor erythroid 2-related factor 2) to the nucleus, where NRF2 binds to  antioxidant response elements (ARE) to activate the expression of a gene of interest. It is found that a promoter containing eight-tandem ARE repeats is highly sensitive to the low ROS levels generated by the soluble and volatile molecules, which include food preservatives, food additives, pharmaceuticals, and signal transduction inducers. In a proof-of-concept study, it is shown that many of these compounds can independently trigger microencapsulated engineered cells to produce sufficient insulin to restore normoglycemia in experimental type-1 diabetic mice. It is believed that this system greatly extends the variety of small-molecule inducers available to drive therapeutic gene switches.

2.
Cell Discov ; 10(1): 9, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263404

RESUMO

Viral proteases and clinically safe inhibitors were employed to build integrated compact regulators of protein activity (iCROP) for post-translational regulation of functional proteins by tunable proteolytic activity. In the absence of inhibitor, the co-localized/fused protease cleaves a target peptide sequence introduced in an exposed loop of the protein of interest, irreversibly fragmenting the protein structure and destroying its functionality. We selected three proteases and demonstrated the versatility of the iCROP framework by validating it to regulate the functional activity of ten different proteins. iCROP switches can be delivered either as mRNA or DNA, and provide rapid actuation kinetics with large induction ratios, while remaining strongly suppressed in the off state without inhibitor. iCROPs for effectors of the NF-κB and NFAT signaling pathways were assembled and confirmed to enable precise activation/inhibition of downstream events in response to protease inhibitors. In lipopolysaccharide-treated mice, iCROP-sr-IκBα suppressed cytokine release ("cytokine storm") by rescuing the activity of IκBα, which suppresses NF-κB signaling. We also constructed compact inducible CRISPR-(d)Cas9 variants and showed that iCROP-Cas9-mediated knockout of the PCSK9 gene in the liver lowered blood LDL-cholesterol levels in mice. iCROP-based protein switches will facilitate protein-level regulation in basic research and translational applications.

4.
Small ; 19(47): e2301427, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37525326

RESUMO

The development of technologies to enable fresh water harvesting from atmospheric moisture could help overcome the problem of potable water scarcity. Here, an atmospheric water harvesting (AWH) device is assembled in a core-shell structure, with the core consisting of networks of alginate (Alg) and polyaniline (PANI) and the outer layer consisting of thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) modified with sulfonic acid groups (SPNIPAM) to increase the water adsorption at low relative humidity. The resulting hydrogel, modified with lithium chloride (LiCl) for increased water storage capacity (SPNIPAM-Li-PANIAlg), displays a similar lower critical solution temperature to pristine PNIPAM (32 °C) while affording a 15-fold higher water capture ratio, and releases water upon exposure to sunlight at intensities less than 1 kW m-2 . The developed AWH system is capable of harvesting 6.5 L of water per kilogram in a single daily absorption/desorption cycle under sunlight and can operate at relative humidity levels as low as 17% with no additional external energy input. The thermo-responsive hydrogel SPNIPAM-Li-PANIAlg exhibits excellent stability during natural sunlight-driven absorption/desorption cycles for at least 30 days, and allows sustainable harvesting of over 28.3 L kg-1 from a moisture-rich environment by means of multiple absorption/desorption cycles.

5.
Nat Metab ; 5(8): 1395-1407, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37524785

RESUMO

Wearable electronic devices are playing a rapidly expanding role in the acquisition of individuals' health data for personalized medical interventions; however, wearables cannot yet directly program gene-based therapies because of the lack of a direct electrogenetic interface. Here we provide the missing link by developing an electrogenetic interface that we call direct current (DC)-actuated regulation technology (DART), which enables electrode-mediated, time- and voltage-dependent transgene expression in human cells using DC from batteries. DART utilizes a DC supply to generate non-toxic levels of reactive oxygen species that act via a biosensor to reversibly fine-tune synthetic promoters. In a proof-of-concept study in a type 1 diabetic male mouse model, a once-daily transdermal stimulation of subcutaneously implanted microencapsulated engineered human cells by energized acupuncture needles (4.5 V DC for 10 s) stimulated insulin release and restored normoglycemia. We believe this technology will enable wearable electronic devices to directly program metabolic interventions.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Animais , Camundongos , Humanos , Masculino , Modelos Animais de Doenças , Expressão Gênica , Mamíferos
6.
Nucleic Acids Res ; 51(15): e85, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37497781

RESUMO

Synthetic biology holds great promise to improve the safety and efficacy of future gene and engineered cell therapies by providing new means of endogenous or exogenous control of the embedded therapeutic programs. Here, we focused on gluconate as a clinically licensed small-molecule inducer and engineered gluconate-sensitive molecular switches to regulate transgene expression in human cell cultures and in mice. Several switch designs were assembled based on the gluconate-responsive transcriptional repressor GntR from Escherichia coli. Initially we assembled OFF- and ON-type switches by rewiring the native gluconate-dependent binding of GntR to target DNA sequences in mammalian cells. Then, we utilized the ability of GntR to dimerize in the presence of gluconate to activate gene expression from a split transcriptional activator. By means of random mutagenesis of GntR combined with phenotypic screening, we identified variants that significantly enhanced the functionality of the genetic devices, enabling the construction of robust two-input logic gates. We also demonstrated the potential utility of the synthetic switch in two in vivo settings, one employing implantation of alginate-encapsulated engineered cells and the other involving modification of host cells by DNA delivery. Then, as proof-of-concept, the gluconate-actuated genetic switch was connected to insulin secretion, and the components encoding gluconate-induced insulin production were introduced into type-1 diabetic mice as naked DNA via hydrodynamic tail vein injection. Normoglycemia was restored, thereby showcasing the suitability of oral gluconate to regulate in situ production of a therapeutic protein.


Assuntos
Diabetes Mellitus Experimental , Gluconatos , Animais , Humanos , Camundongos , Diabetes Mellitus Experimental/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Gluconatos/metabolismo , Gluconatos/farmacologia , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Transgenes
7.
Nat Chem Biol ; 19(6): 767-777, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36894721

RESUMO

Bacterial transcription factors (TFs) with helix-turn-helix (HTH) DNA-binding domains have been widely explored to build orthogonal transcriptional regulation systems in mammalian cells. Here we capitalize on the modular structure of these proteins to build a framework for multi-input logic gates relying on serial combinations of inducible protein-protein interactions. We found that for some TFs, their HTH domain alone is sufficient for DNA binding. By fusing the HTH domain to TFs, we established dimerization dependent rather than DNA-binding-dependent activation. This enabled us to convert gene switches from OFF-type into more widely applicable ON-type systems and to create mammalian gene switches responsive to new inducers. By combining both OFF and ON modes of action, we built a compact, high-performance bandpass filter. Furthermore, we were able to show cytosolic and extracellular dimerization. Cascading up to five pairwise fusion proteins yielded robust multi-input AND logic gates. Combinations of different pairwise fusion proteins afforded a variety of 4-input 1-output AND and OR logic gate configurations.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Animais , Multimerização Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequências Hélice-Volta-Hélice , DNA/química , Mamíferos
8.
Nucleic Acids Res ; 51(5): e28, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36625292

RESUMO

Precise control of the delivery of therapeutic proteins is critical for gene- and cell-based therapies, and expression should only be switched on in the presence of a specific trigger signal of appropriate magnitude. Focusing on the advantages of delivering the trigger by inhalation, we have developed a mammalian synthetic gene switch that enables regulation of transgene expression by exposure to the semi-volatile small molecule acetoin, a widely used, FDA-approved food flavor additive. The gene switch capitalizes on the bacterial regulatory protein AcoR fused to a mammalian transactivation domain, which binds to promoter regions with specific DNA sequences in the presence of acetoin and dose-dependently activates expression of downstream transgenes. Wild-type mice implanted with alginate-encapsulated cells transgenic for the acetoin gene switch showed a dose-dependent increase in blood levels of reporter protein in response to either administration of acetoin solution via oral gavage or longer exposure to acetoin aerosol generated by a commercial portable inhaler. Intake of typical acetoin-containing foods, such as butter, lychees and cheese, did not activate transgene expression. As a proof of concept, we show that blood glucose levels were normalized by acetoin aerosol inhalation in type-I diabetic mice implanted with acetoin-responsive insulin-producing cells. Delivery of trigger molecules using portable inhalers may facilitate regular administration of therapeutic proteins via next-generation cell-based therapies to treat chronic diseases for which frequent dosing is required.


Assuntos
Acetoína , Diabetes Mellitus Experimental , Transgenes , Animais , Camundongos , Acetoína/administração & dosagem , Proteínas de Bactérias , Sequência de Bases , Diabetes Mellitus Experimental/terapia , Fatores de Transcrição/metabolismo , Administração por Inalação
9.
Biotechnol Prog ; 39(2): e3312, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36314654

RESUMO

Mechanical cues are involved in many biological processes, including embryonic development and patterning. For example, external mechanical forces (shear stress), lateral cell-cell interactions, and mechanical properties (stiffness and composition) of the extracellular matrix are thought to modulate Wnt signaling, which is a highly conserved pathway involved in regulating stem cell renewal, proliferation, and differentiation. In this work, we employed a customized higher-throughput shear stress induction device for the controlled application of mechanical stress to study the effects of shear stress on the differentiation of human induced pluripotent stem cells (hiPSCs) toward the three germ layers. We found that mechanical stress alters lineage commitment during ectoderm and mesoderm differentiation. We show that this effect correlates with reduced Wnt signaling, evaluated in terms of the promoter activity of an established TCF3-responsive promoter. Whole transcriptome sequencing and pathway enrichment analysis of the differentially expressed genes between hiPSC-derived mesoderm cells differentiated in the presence or absence of piston-induced shear stress confirmed that Wnt/ß-catenin signaling is among the most affected developmental pathways. Furthermore, our results suggest that suitably programmed shear stress application could be used to selectively promote differentiation of hiPSCs to either lateral or paraxial mesoderm in commercially available media.


Assuntos
Células-Tronco Pluripotentes Induzidas , Via de Sinalização Wnt , Humanos , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo , Diferenciação Celular/genética , Mesoderma/metabolismo
10.
Sci Adv ; 8(24): eabm4389, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35704573

RESUMO

Traceless physical cues are desirable for remote control of the in situ production and real-time dosing of biopharmaceuticals in cell-based therapies. However, current optogenetic, magnetogenetic, or electrogenetic devices require sophisticated electronics, complex artificial intelligence-assisted software, and external energy supplies for power and control. Here, we describe a self-sufficient subcutaneous push button-controlled cellular implant powered simply by repeated gentle finger pressure exerted on the overlying skin. Pushing the button causes transient percutaneous deformation of the implant's embedded piezoelectric membrane, which produces sufficient low-voltage energy inside a semi-permeable platinum-coated cell chamber to mediate rapid release of a biopharmaceutical from engineered electro-sensitive human cells. Release is fine-tuned by varying the frequency and duration of finger-pressing stimulation. As proof of concept, we show that finger-pressure activation of the subcutaneous implant can restore normoglycemia in a mouse model of type 1 diabetes. Self-sufficient push-button devices may provide a new level of convenience for patients to control their cell-based therapies.


Assuntos
Inteligência Artificial , Insulina , Animais , Fontes de Energia Elétrica , Eletrônica , Humanos , Camundongos , Próteses e Implantes
11.
Metab Eng ; 73: 70-81, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35724832

RESUMO

CRISPR-based systems have fundamentally transformed our ability to study and manipulate stem cells. We explored the possibility of using catalytically dead Cas9 (dCas9) from S. pyogenes as a platform for targeted epigenetic editing in stem cells to enhance the expression of the eomesodermin gene (EOMES) during differentiation. We observed, however, that the dCas9 protein itself exerts a potential non-specific effect in hiPSCs, affecting the cell's phenotype and gene expression patterns during subsequent directed differentiation. We show that this effect is specific to the condition when cells are cultured in medium that does not actively maintain the pluripotency network, and that the sgRNA-free apo-dCas9 protein itself influences endogenous gene expression. Transcriptomics analysis revealed that a significant number of genes involved in developmental processes and various other genes with non-overlapping biological functions are affected by dCas9 overexpression. This suggests a potential adverse phenotypic effect of dCas9 itself in hiPSCs, which could have implications for when and how CRISPR/Cas9-based tools can be used reliably and safely in pluripotent stem cells.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Pluripotentes Induzidas , Expressão Gênica , Humanos , Linha Primitiva
12.
Nat Commun ; 12(1): 6786, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811361

RESUMO

The main (Mpro) and papain-like (PLpro) proteases encoded by SARS-CoV-2 are essential to process viral polyproteins into functional units, thus representing key targets for anti-viral drug development. There is a need for an efficient inhibitor screening system that can identify drug candidates in a cellular context. Here we describe modular, tunable autoproteolytic gene switches (TAGS) relying on synthetic transcription factors that self-inactivate, unless in the presence of coronavirus protease inhibitors, consequently activating transgene expression. TAGS rapidly report the impact of drug candidates on Mpro and PLpro activities with a high signal-to-noise response and a sensitivity matching concentration ranges inhibiting viral replication. The modularity of the TAGS enabled the study of other Coronaviridae proteases, characterization of mutations and multiplexing of gene switches in human cells. Mice implanted with Mpro or PLpro TAGS-engineered cells enabled analysis of the activity and bioavailability of protease inhibitors in vivo in a virus-free setting.


Assuntos
SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Animais , Antivirais/uso terapêutico , Camundongos , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
13.
Curr Opin Chem Biol ; 64: 98-105, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34216875

RESUMO

Engineered cell-based therapies have emerged as a new paradigm in modern medicine, with several engineered T cell therapies currently approved to treat blood cancers and many more in clinical development. Tremendous progress in synthetic biology over the past two decades has allowed us to program cells with sophisticated sense-and-response modules that can effectively control therapeutic functions. In this review, we highlight recent advances in mammalian synthetic gene switches, focusing on devices designed for therapeutic applications. Although many gene switches responding to endogenous or exogenous molecular signals have been developed, the focus is shifting towards achieving remote-controlled production of therapeutic effectors by stimulating implanted engineered cells with traceless physical signals, such as light, electrical signals, magnetic fields, heat or ultrasound.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Mamíferos , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Genes de Troca/efeitos da radiação , Genes Sintéticos/efeitos da radiação , Humanos , Mamíferos/genética , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Biologia Sintética/métodos
14.
Curr Opin Biotechnol ; 47: 59-66, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28662442

RESUMO

Our ability to engineer mammalian cells with effective therapeutic behaviors has brought new hope for treating metabolic diseases. Synthetic gene networks have been customized to interface with the host metabolism, discriminate between healthy and diseased states, and respond by producing an adjusted dose of the therapeutic molecule. Such devices have the potential to treat a range of dysfunctions that are simply not addressable using conventional therapies. Recently, the repurposing of native signaling pathways has formed the basis of autonomous therapeutic programs genetically installed in mammalian cells and has greatly expanded the possibilities to effectively tackle metabolic disorders. Here, we outline network topologies that have been successfully validated in animal models of metabolic diseases and discuss future developments that will be important for bringing this technology closer to clinical application.


Assuntos
Doenças Metabólicas/terapia , Biologia Sintética/métodos , Animais , Biomarcadores/metabolismo , Redes Reguladoras de Genes , Genes Sintéticos , Humanos , Resistência à Insulina , Doenças Metabólicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...